對(duì)于鋰離子
電池而言,熱失控是最嚴(yán)重的安全事故。鋰離子
電池熱失控源于產(chǎn)熱速率遠(yuǎn)高于散熱速率,大量的熱量在鋰離子電池內(nèi)部積累,引起鋰離子電池溫度的快速升高,導(dǎo)致隔膜收縮、熔化,正負(fù)極活性物質(zhì)分解等自發(fā)的放熱反應(yīng),引起鋰離子電池起火和爆炸。避免熱失控發(fā)生是無(wú)數(shù)的鋰離子電池設(shè)計(jì)者們追求的終極目標(biāo),然而要達(dá)到這一目標(biāo),首先需要對(duì)鋰離子電池?zé)崾Э剡^程的反應(yīng)歷程有清晰和全面的認(rèn)識(shí),但是鋰離子電池的密封結(jié)構(gòu)是阻礙我們的第一道關(guān)卡,全密封的結(jié)構(gòu)設(shè)計(jì)讓鋰離子電池內(nèi)部反應(yīng)的觀測(cè)變的非常困難。其次,熱失控中的高溫是阻礙我們的第二道關(guān)卡,上千度的高溫將可能留存的證據(jù)焚燒殆盡。最后,熱失控的高速度是阻礙我們的第三道關(guān)卡,熱失控中鋰離子發(fā)生爆炸的時(shí)間往往不足0.01s,這也讓跟蹤其中的反應(yīng)過程變的尤為的困難。
第一道關(guān)卡:密封
首先我們來看第一道關(guān)卡,鋰離子電池一般采用方形、圓柱形硬殼密封結(jié)構(gòu)或者軟包密封結(jié)構(gòu),共同特點(diǎn)是外部的探測(cè)設(shè)備很難進(jìn)入到鋰離子電池內(nèi)部,因此要實(shí)現(xiàn)對(duì)鋰離子電池在熱失控中內(nèi)部反應(yīng)的跟蹤,首先要解決這一問題。解決這一問題的思路有兩個(gè):
一、內(nèi)部植入。我們可以在鋰離子電池內(nèi)部置入熱電偶,實(shí)時(shí)跟蹤熱失控中鋰離子電池內(nèi)部溫度變化,我們也可以通過在鋰離子電池內(nèi)部置入FBG纖維檢測(cè)器的方式對(duì)鋰離子電池在熱失控中的溫度和壓力變化進(jìn)行跟蹤分析,這也是目前應(yīng)用比較廣泛的方式。
二、透視技術(shù)。鋰離子電池的密封結(jié)構(gòu)雖然能夠阻擋可見光,但是對(duì)于高能射線技術(shù)卻無(wú)法阻擋,因此采用高能射線和粒子對(duì)鋰離子電池在熱失控中的行為進(jìn)行跟蹤也是一種非常有效的方法,例如我們之前就曾經(jīng)介紹過倫敦城市學(xué)院的Donal P. Finegan等人就通過高速的X射線攝影裝置對(duì)鋰離子電池在熱失控中的內(nèi)部反應(yīng)過程進(jìn)行了全面的跟蹤,揭示了在熱失控過程中18650電池的防爆閥的工作原理。中子不帶電荷,因此穿透能力非常強(qiáng),近年來也廣泛的被用于鋰離子電池內(nèi)部反應(yīng)機(jī)理的研究,例如德國(guó)博世公司的工程師們就利用中子衍射技術(shù)對(duì)電解液在鋰離子電池內(nèi)部的浸潤(rùn)的過程進(jìn)行了跟蹤和研究,通過中子衍射技術(shù)我們“直接看到”了電解液在鋰離子電池電芯中的浸潤(rùn)過程,因此中子衍射技術(shù)也非常有潛力應(yīng)用在鋰離子電池?zé)崾Э剡^程的研究中。
第二道關(guān)卡:高溫
鋰離子電池?zé)崾Э貢r(shí),儲(chǔ)存在鋰離子電池內(nèi)部的化學(xué)能在短時(shí)間內(nèi)大量的釋放,產(chǎn)熱速度遠(yuǎn)遠(yuǎn)高于鋰離子電池的散熱速率,因此導(dǎo)致鋰離子電池在短時(shí)間內(nèi)溫度快速升高,研究表明鋰離子電池在熱失控中溫度可達(dá)1000℃以上,這甚至?xí)䦟囯x子電池內(nèi)部的銅箔熔化(Cu的熔點(diǎn)為1085℃),極端的高溫將所有可能留存的證據(jù)全部付之一炬,因此我們很難從熱失控后的鋰離子電池殘骸推斷熱失控的原因。極速冷卻可以有效的解決這一問題,例如之前我們?cè)?jīng)報(bào)道過清華大學(xué)的歐陽(yáng)明高教授將熱失控中的電池放入液氮之中,為鋰離子電池快速降溫,從而實(shí)現(xiàn)了對(duì)“第一案發(fā)現(xiàn)場(chǎng)”的證據(jù)固定,這也幫助歐陽(yáng)教授發(fā)現(xiàn)即便是在隔膜沒有發(fā)生熔化和收縮的情況下,鋰離子電池仍然可能通過O2在正負(fù)極之間的“穿梭”導(dǎo)致鋰離子電池?zé)崾Э,這也為熱失控的研究開了一扇嶄新的大門。
第三道關(guān)卡:高速
鋰離子電池在熱失控中反應(yīng)速度非常快,特別是在熱失控發(fā)生爆炸時(shí),反應(yīng)時(shí)間往往小于0.01s,這也導(dǎo)致大多數(shù)的手段往往由于時(shí)間精度不夠引起觀測(cè)的不準(zhǔn)確,為了解決這一問題,X射線高速攝影技術(shù)隆重出場(chǎng),DonalP. Finegan等人為了研究在針刺實(shí)驗(yàn)中鋰離子電池內(nèi)部的反應(yīng)過程,采用的X射線高速攝影技術(shù)的幀率就達(dá)到了2000fps(分辨率10um)和5130fps(分辨率20um),在如此高的幀率下我們能夠基本清楚的看到熱失控的全部反應(yīng)歷程,但是即便是如此高的幀率仍然難以拍攝到鋰離子電池的爆炸瞬間的反應(yīng)過程(時(shí)間往往小于0.01s),這就需要同步輻射技術(shù)登場(chǎng)了。同步輻射光源的強(qiáng)度要遠(yuǎn)遠(yuǎn)高于普通的X射線,因此能夠?qū)崿F(xiàn)更短的曝光時(shí)間,歐洲同步輻射中心通過同步輻射光源使得曝光的幀率達(dá)到了驚人的每秒數(shù)百萬(wàn)幀,從而實(shí)現(xiàn)了對(duì)玻璃破碎、起弧等過程進(jìn)的觀測(cè)。在同步輻射技術(shù)的幫助下,DonalP. Finegan成功的對(duì)18650電池爆炸瞬間進(jìn)行了觀測(cè),X射線拍攝速度更是達(dá)到了20272幀/秒,成功的觀察到了在爆炸過程中18650電池的防爆閥是如何工作的。
鋰離子電池?zé)崾Э貒?yán)重威脅著使用者的生命和財(cái)產(chǎn)安全,因此對(duì)熱失控的機(jī)理的研究就顯得尤為重要,以往由于實(shí)驗(yàn)條件的限制,使得我們只能夠通過外殼溫度和電池電壓變化的情況間接的推斷鋰離子電池內(nèi)部的一些反應(yīng)。技術(shù)的進(jìn)步不僅僅讓我們能夠?qū)崟r(shí)的檢測(cè)到鋰離子電池內(nèi)部溫度和壓力的變化,高速攝影技術(shù)的加持更是讓我們能夠直觀的觀察到熱失控中鋰離子電池內(nèi)部的高速反應(yīng)過程,這對(duì)于我們認(rèn)識(shí)鋰離子電池的反應(yīng)機(jī)理具有非常重要的意義,也為更加安全的鋰離子電池設(shè)計(jì)提供了指導(dǎo)。
(責(zé)任編輯:admin)