摘要:近日,滑鐵盧大學(xué)的Nazar教授課題組采用上圖一所示的方法,通過原位交聯(lián)的方式復(fù)合粘結(jié)劑CMC與正極物料,再通過傳統(tǒng)涂覆的方式實(shí)現(xiàn)了14.9 mgcm−2高面負(fù)載硫電極的制備,更重要的是其電解液/硫的比例僅需3.5:1 (uL:mg),極大的解決了體積能量密度低的問題,在穩(wěn)定循環(huán)的前提下可實(shí)現(xiàn)14.7 mA h cm −2的面比容量。
鋰硫
電池有望實(shí)現(xiàn)商業(yè)化應(yīng)用并成為鋰離子
電池的理想替代品,但諸多問題限制了其進(jìn)一步的實(shí)用化生產(chǎn),其中其體積能量密度是最容易被忽視的問題之一。通常,正極中碳材料比例較高,加之硫密度較低(2.07 mg cm−3),使得正極中單位體積中發(fā)揮作用的活性物質(zhì)量有限。
其次,為保證活性物質(zhì)的充分發(fā)揮,電解液與硫的比例想多較高,這在降低了成品電池的質(zhì)量能量密度的同時(shí),也極大的降低了其體積能量密度。因此,如何實(shí)現(xiàn)緊實(shí)的鋰硫電池正極設(shè)計(jì),從而提高電極的體積能量密度極為重要。
Figure 1. A schematicillustration of the concept of coupling hierarchical sulfur composite based ona hybrid host with in situ cross-linked binderin order to fabricate stablehigh-loading cathodes. Step 1 starts with hybridizing two individual 2Dnanosheets (graphene and g-C3N 4) to form thenanosheet-type host material; instep 2, hierarchical sulfur composites are formed as large multi-micrometersized secondary particles formed as aconsequence of evaporation inducedself-assembly and sulfur infusion; step 3 involves in situ cross-linking of thecarboxymethyl cellulose binder inthe presence of the sulfur composites.
近日,滑鐵盧大學(xué)的Nazar教授課題組采用上圖一所示的方法,通過原位交聯(lián)的方式復(fù)合粘結(jié)劑CMC與正極物料,再通過傳統(tǒng)涂覆的方式實(shí)現(xiàn)了14.9 mgcm−2高面負(fù)載硫電極的制備,更重要的是其電解液/硫的比例僅需3.5:1 (uL:mg),極大的解決了體積能量密度低的問題,在穩(wěn)定循環(huán)的前提下可實(shí)現(xiàn)14.7 mA h cm −2的面比容量。
Figure 2. a) Aschematic illustration of the cross-linking of CMC binder with CA as thelinker, based on the esterifiation of the –OH groups in CMCand the –COOH groupsin CA at 150 °C. b) The FTIR spectra of the pristine CA, CMC, cross-linkedCMC-CA (without the sulfur composite) and thein situ cross-linked sulfurelectrodes. c–e) The SEM images of the surface of sulfur cathodes fabricatedusing (c) PVDF binder and (d,e) cross-linkedCMC-CA binder.
圖2 (a)表明了反應(yīng)的原理是通過CMC中的-OH和CA中的-COOH酯化作用進(jìn)行的,對應(yīng)的紅外光譜顯示了CA、CMC和在極片中交聯(lián)后粘結(jié)劑的特征峰的存在。而SEM表征則更為直觀的顯示出原位交聯(lián)粘結(jié)劑在高負(fù)載的情況下仍然保持十分完整緊實(shí)的形貌,對應(yīng)的PVDF粘結(jié)劑涂覆的電極則出現(xiàn)常見的開裂問題。
Figure3. a) The discharge/charge voltage profies (at C/20) and b) cycling stability(at C/2) of the NG-CN/PVDF, NG-CN/CMC-CA, g-C3N 4/PVDF, andNdC/PVDF sulfurcathodes with a low sulfur loading of ≈2.0 mg cm −2; electrodes wereconditioned at C/20 before cycling at C/2. c,d) The voltage profies of theNG-CN/CMC-CA sulfur cathodes with varied sulfur loadings as a function of (c)mass specifi capacity and (d) areal capacity at 0.5 mA cm −2.e) The cyclingstability of the NG-CN based sulfur cathodes fabricated with PVDF, non- andcross-linked CMC-CA binders with sulfur loading of5.2 mg cm −2 at 1.0 mA cm −2.f) The cycling stability of NG-CN/CMC-CA cathodes with sulfur loadings of 10.2and 14.9 mg cm −2 at 1.0 mA cm −2; theinset shows the voltage profies of the14.9 mg cm −2 electrode at 11th cycle, with signifiant voltage flctuationindicating dendrite formation.
電化學(xué)表征進(jìn)一步佐證了通過原位交聯(lián)劑交聯(lián)多功能化和多級結(jié)構(gòu)硫正極復(fù)合物的方式可實(shí)現(xiàn)高電化學(xué)表現(xiàn)。氮摻雜的石墨烯和石墨化C3N4有很高的導(dǎo)電性和很強(qiáng)的多硫化物吸附性能。微米級顆粒的正極材料形成緊實(shí)的高負(fù)載量電極,硫比例下可達(dá)到14.9mgcm−2。其次,研究人員指出鋰負(fù)極的問題是進(jìn)一步實(shí)現(xiàn)更高負(fù)載量鋰硫電池穩(wěn)定循環(huán)的關(guān)鍵。
(責(zé)任編輯:王杰)