傳統(tǒng)集流體和新型集流體的結構對比。
安全測試對比,上排是傳統(tǒng)鋰
電池,下排是基于新型集流體的鋰
電池。
從上世紀90年代左右大規(guī)模商用開始,鋰離子電池的能量密度大約以每年3%的速度提升。在增加能量密度的同時,人們希望鋰離子電池能夠更輕、更安全。鋰電池主要將能量存儲在電極材料中。因此,提升能量密度的常用思路就是優(yōu)化和開發(fā)電極材料,或者直接增加活性物質在電池中的比例。
不過最近,鋰電池研究領域的明星團隊——斯坦福大學的崔屹課題組,通過革新電池中的非活性結構“集流體”,實現(xiàn)了電池能量密度再增加8%~26%。成果作為封面,發(fā)表在Nature Energy上。該成果的第一作者是課題組的博士后葉玉勝和訪問學者卓聯(lián)洋。
這種新型集流體比傳統(tǒng)集流體輕80%;并且由于設計中添加了阻燃劑,還能有效防止電池燃燒。與常見的改善電極材料、或增加活性物質的思路不同,這個成果的新穎之處在于,從集流體這個非活性的部分入手,在能量密度、電池重量、安全性能同時實現(xiàn)了明顯的優(yōu)化。
“我們之所以選擇集流體,是因為當把整個電池的結構進行拆分之后,發(fā)現(xiàn)傳統(tǒng)的金屬集流體占鋰電池比重可達15%甚至更高。它由金屬箔膜組成,重量大,功能單一,主要作為電子的傳導載體。此外,集流體是電池內唯一不影響鋰離子傳輸?shù)慕M成部分,具有很大的開發(fā)空間。所以我們想通過優(yōu)化集流體,讓電池的能量密度再進一步提升。”葉玉勝介紹。
越來越薄的集流體創(chuàng)新的“三明治”結構
業(yè)界總在不斷嘗試將集流體越做越薄。這是為了減輕這個非活性成分在鋰離子電池重量中所占的比重。鋰離子電池在充放電過程中,電解液中的鋰離子,在正負極之間往返運動。而集流體作為電池中的非活性成分,不貢獻能量。它的作用主要是承載正負極的電極材料,同時收集電流和傳導電子。
集流體一般采用高純度的銅或者鋁作為材料,而高純度的金屬比較重。常見的集流體形式是金屬薄膜,正極的集流體是鋁箔,負極則是銅箔。以電動汽車的常用鋰電池為例,常用的銅箔厚度是9微米。也有廠家開發(fā)了6微米、甚至更薄的銅箔集流體。
“太薄的金屬集流體,在機械強度上面臨很大的問題。”葉玉勝說,由于電極材料涂附在集流體上,金屬箔需要比較好的延展性和強度,否則會容易斷裂。除此之外,生產超薄金屬膜集流體,也會導致成本增加。
那如何既保持集流體的導電性、維持良好的機械強度,又減輕集流體的重量呢?新設計的方案是將集流體變成“三明治”結構:以輕質的有機物材料作為支撐體,在其兩面復合約為500nm的銅薄膜。
由于有機物大大輕于金屬,這樣制備出來的新集流體,總體厚度不增加的情況下(9微米左右),比原來的純金屬集流體變輕了80%。由于集流體的重量占比減輕,電池能量密度就能夠提升8%~26%(具體數(shù)據(jù)依電池類型的不同而不同)。并且,有機物的易調控性可以讓研究人員在集流體中加入新功能。
研究團隊選擇的有機材料是聚酰亞胺,并且在其中加入了阻燃劑。聚酰亞胺是一種常見的工程材料,已經被廣泛使用。在上世紀60年代就開始被使用,最早的產品是電機的絕緣槽、電纜繞包材料,后來擴展到微電子航天、航空器及軍事領域。它具有耐高溫、耐化學腐蝕性、高強度等優(yōu)點。
“金屬密度很大,有機物的密度比較低,所以我們的思路是用有機物作為一個基底,來實現(xiàn)同樣導電效果,同樣有支撐效果的集流體,來替代現(xiàn)在商業(yè)上的純金屬薄膜型的集流體。”葉玉勝表示。
成熟的制備工藝
聚酰亞胺的熱穩(wěn)定性很高,能夠承受400攝氏度的高溫。相比之下,鋰電池隔膜常用的PE、PP材料,在超過120攝氏度時就會發(fā)生收縮的情況。
以聚酰亞胺制備出來的集流體,熱穩(wěn)定性能夠得到顯著提高。甚至在電池出現(xiàn)了熱失控的情況時,集流體都能夠保持穩(wěn)定。并且它本身是不燃的,這也能夠提升電池的本身安全性。由于其化學穩(wěn)定性強,也能夠有效避免集流體與電池中其它組成成分的副反應。
從工藝成熟度上考慮,聚酰亞胺的工業(yè)制備已經很成熟,成本低廉。此外,采用堿分解的方式,就可以對聚酰亞胺進行回收,這也為將來回收廢舊電池中的有機物提供了環(huán)保廉價方案。采用聚酰亞胺作為基底,滿足了集流體的支撐性能。那么在這一層基底之上的金屬箔,只需要滿足導電性,不需要再考慮機械強度而做到幾微米那么厚。
葉玉勝介紹,“500納米左右的銅層的電導率,與純金屬薄膜集流體的電導率已經非常接近了。”這樣在保持原有導電性能的同時就可以顯著降低集流體的重量。
金屬薄膜制備目前也有很成熟的工藝。為了控制制備成本,可采用連續(xù)濺射、無電鍍等方法來制備超薄金屬層,這能夠為該技術的規(guī)模化生產提供廣闊前景。
聚酰亞胺、金屬膜的單獨制備工藝有成熟的方案。因此,新型集流體的另一個問題是如何使金屬膜與聚酰亞胺之間穩(wěn)定地粘附在一起。針對這個問題,研究團隊對聚酰亞胺的界面進行改性,增強了聚酰亞胺和金屬之間的粘附力。
目前,從材料成本計算,新的集流體每平方米的成本約為1.3美元,而純銅箔的材料成本約為每平方米1.4美元。這顯示了新集流體在大規(guī)模生產上的成本優(yōu)勢。這項新技術已經通過斯坦福大學申請專利,團隊也正在探索大規(guī)模生產的工藝。
有阻燃效果的集流體
研究對這種新型的集流體進行了安全測試。當暴露在明火中,傳統(tǒng)的鋰電池會立刻被點燃并且持續(xù)劇烈燃燒,直到將電解質燃盡。而采用了新型集流體的鋰電池,則只能產生微弱的火苗,無法燃燒起來。
這是由于溫度升高時,聚酰亞胺中添加的阻燃劑被釋放出來,起到了阻燃的效果。通常而言,明火極易使鋰電池燃燒。“一般的電池安全測試不會這么做,因為直接拿明火去點燃鋰電池是一種很嚴苛的安全表征方式,我們選擇了這種更嚴苛的方式去評價它的安全性。”葉勝玉介紹。
一直以來,高安全性和高能量密度之間,存在著矛盾。無論將阻燃劑添加在電解液、隔膜、或者正負極材料中,都是在鋰離子的傳輸路徑中引入了新的物質,從而影響離子傳導,進而影響電池性能,最終導致能量密度降低。
從內部的結構來看,在電池充電跟放電過程中,鋰離子會從電極材料的某一極,通過電解液,穿過隔膜,到達另外一極。
因此在這個過程中,只要加入新的物質,都會影響電池的性能。例如,將阻燃劑加入電解液中,就會降低電解液的導電率。
那么不參與鋰離子運輸過程的集流體就是存放阻燃劑的理想部位。但是傳統(tǒng)的純金屬薄膜以高純度的金屬為原材料,很難將物質添加在致密的金屬層中。新集流體以有機物作為基底,就可以通過不同的工藝,將阻燃劑復合進有機物中。
除了集流體對鋰電池內部結構帶來的革新,Nature Energy在一篇評論文章中還表示,這種設計理念可以擴展到鋰電池的外包裝設計。外包裝占據(jù)鋰電池總重約20%,運用這項技術開發(fā)更輕的外包裝,能夠進一步顯著提高鋰離子電池的能量密度和安全性。
(責任編輯:子蕊)